Best Practices for IADR Abstract and Proposal Preparation and Submission

September 14, 2023
Behavioral, Epidemiologic, and Health Services Research Group
Outline

• **Timeline** for 2024 mtg.
 • Proposals
 • Resources
 - IADR
 - Other
 • Key elements
 • How to build your story
 • Examples
 • Discussion / Q & A
Session Proposal Submission Closes: September 27, 2023, 11:59 p.m. PT
Abstract Submission Closes: October 17, 2023, 11:59 p.m. PT

Outline

• **Timeline** for 2024 mtg.
 • Proposals
 • Resources
 ▪ IADR
 ▪ Other
 • Key elements
 • How to build your story
 • Examples
 • Discussion / Q & A
Outline

• Timeline for 2024 mtg.
• Proposals -- Abstracts
 • Resources
 ▪ IADR
 ▪ Other
 • Key elements
 • How to build your
 • Examples
 • Discussion / Q & A
Outline

- Timeline for 2024 mtg.
- Proposals -- Abstracts
- Resources
 - IADR
 - Other
- Key elements
- How to build your
- Examples
- Discussion / Q & A
Outline

• Timeline for 2024 mtg.
• Proposals -- Abstracts
• Resources
 ▪ IADR
 ▪ Other
• Key elements
• How to build your story
 • Examples
 • Discussion / Q & A
• Timeline for 2024 mtg.
• Proposals -- Abstracts
• Resources
 ▪ IADR
 ▪ Other
• Key elements
• How to build your story
• Examples
• Discussion / Q & A
2024
IADR/AADOCR/CADR
General Session &
Exhibition
MARCH 13-16, 2024 | NEW ORLEANS, LA, USA
102nd General Session & Exhibition of the IADR
53rd Annual Meeting of the AADOCR
48th Annual Meeting of the CADR

https://www.iadr.org/2024iags
Session Proposal Submission Closes: September 27, 2023, 11:59 p.m. PT
Abstract Submission Closes: October 17, 2023, 11:59 p.m. PT

https://www.iadr.org/2024iags
Session Proposal Submission Closes: September 27, 2023, 11:59 p.m. PT
Abstract Submission Closes: October 17, 2023, 11:59 p.m. PT

https://www.iadr.org/2024iags
Session Proposal Submission Closes: September 27, 2023, 11:59 p.m. PT
Abstract Submission Closes: October 17, 2023, 11:59 p.m. PT

https://www.iadr.org/2024iags
Session Proposal Submission Closes: September 27, 2023, 11:59 p.m. PT
Abstract Submission Closes: October 17, 2023, 11:59 p.m. PT

Session proposal
- ~several dozens

Symposium
- usually 90’

Hands on workshop

Abstract
- ~several hundreds to thousands

Poster presentation
- 75’ sessions
 - (Thu-Sat)

Oral presentation
- 10’ + 5’ discussion
 - (Wed-Sat)

https://www.iadr.org/2024iags
Submit your Session Proposal!

The International Association for Dental, Oral, and Craniofacial Research (IADR) is excited to announce the opening of the ScholarOne Abstracts submission site for session proposal submission for the 2024 IADR/AADOCR/CADR General Session.

To ensure delivery of messages sent to you from the ScholarOne Abstracts platform with regards to 2024 IADR/AADOCR/CADR General Session please safelist the following domains: amazones.com and abstractcentral.com

Review the 2024 IADR/AADOCR/CADR General Session Guidelines for Session Proposals in full prior to beginning your abstract submission.

https://www.iadr.org/2024iags/presentations

https://www.iadr.org/2024iags
GUIDELINES FOR SESSION PROPOSALS

Important Dates and Deadlines:

- July 11, 2023–Session Proposal Submission Site Opens
- September 12, 2023–Group/Network Sponsorship Approval Deadline
- September 19, 2023–Group/Networks to notify Organizers of sponsorship status
- September 27, 2023, 11:59 p.m. PT–Deadline to Submit a Session Proposal to ScholarOne Abstracts site

https://www.iadr.org/2024iags/presentations
A cohesive session organized around a **cutting-edge topic with about three to four speakers**; typically, **90 minutes in length** unless approved otherwise. Approval of Group/Network sponsorship is required from at least one IADR Scientific Group/Network. Symposium submissions exhibiting a **cross-collaboration** between more than one Scientific Group/Network will be prioritized higher if accepted into the scientific program. IADR encourages not only collaboration within Groups/Networks, but with the greater scientific community. Organizers are encouraged to include noteworthy speakers from outside a traditional IADR background.
Session Proposals

Symposium
A cohesive session organized around a **cutting-edge topic with about three to four speakers**; typically, **90 minutes in length** unless approved otherwise. Approval of Group/Network sponsorship is required from at least one IADR Scientific Group/Network. Symposium submissions exhibiting a **cross-collaboration** between more than one Scientific Group/Network will be prioritized higher if accepted into the scientific program. IADR encourages not only collaboration within Groups/Networks, but with the greater scientific community. Organizers are encouraged to include noteworthy speakers from outside a traditional IADR background.

Hands-on Workshop
A session organized with a **“hands-on” application**; typically, 90 minutes in length unless approved otherwise. Approval of Group/Network sponsorship is required from at least one IADR Scientific Group/Network. Hands-on Workshop submissions exhibiting a **cross-collaboration** between more than one Scientific Group/Network will be prioritized higher if accepted into the scientific program. IADR encourages not only collaboration within Groups/Networks, but with the greater scientific community and this should be reflected in the participants; organizers are encouraged to include noteworthy experts from outside a traditional IADR background.

https://www.iadr.org/2024iags/presentations
Session Proposals

Symposium
A cohesive session organized around a cutting-edge topic with about three to four speakers; typically, 90 minutes in length unless approved otherwise. Approval of Group/Network sponsorship is required from at least one IADR Scientific Group/Network. Symposium submissions exhibiting a cross-collaboration between more than one Scientific Group/Network will be prioritized higher if accepted into the scientific program. IADR encourages not only collaboration within Groups/Networks, but with the greater scientific community. Organizers are encouraged to include noteworthy speakers from outside a traditional IADR background.

Hands-on Workshop
A session organized with a “hands-on” application; typically, 90 minutes in length unless approved otherwise. Approval of Group/Network sponsorship is required from at least one IADR Scientific Group/Network. Hands-on Workshop submissions exhibiting a cross-collaboration between more than one Scientific Group/Network will be prioritized higher if accepted into the scientific program. IADR encourages not only collaboration within Groups/Networks, but with the greater scientific community and this should be reflected in the participants; organizers are encouraged to include noteworthy experts from outside a traditional IADR background.

Lunch & Learning Sessions
A 60-minute informal discussion led by an expert on a topic of high interest over the designated time. These sessions are directed at students, but all are welcome to sign up. Approval of Group/Network sponsorship is required from at least one IADR Scientific Group/Network. Focused Learning Session submissions exhibiting a cross-collaboration between more than one Scientific Group/Network will be prioritized higher if accepted into the scientific program. IADR encourages not only collaboration within Groups/Networks, but with the greater scientific community.

https://www.iadr.org/2024iags/presentations
Session Proposals

Symposium
A cohesive session organized around a **cutting-edge topic with about three to four speakers**; typically, **90 minutes in length** unless approved otherwise. Approval of Group/Network sponsorship is required from at least one IADR Scientific Group/Network. Symposium submissions exhibiting a **cross-collaboration** between more than one Scientific Group/Network will be prioritized higher if accepted into the scientific program. IADR encourages not only collaboration within Groups/Networks, but with the greater scientific community. Organizers are encouraged to include noteworthy speakers from outside a traditional IADR background.

Hands-on Workshop
A session organized with a **“hands-on” application**; typically, 90 minutes in length unless approved otherwise. Approval of Group/Network sponsorship is required from at least one IADR Scientific Group/Network. Hands-on Workshop submissions exhibiting a **cross-collaboration** between more than one Scientific Group/Network will be prioritized higher if accepted into the scientific program. IADR encourages not only collaboration within Groups/Networks, but with the greater scientific community and this should be reflected in the participants; organizers are encouraged to include noteworthy experts from outside a traditional IADR background.

Lunch & Learning Sessions
A 60-minute **informal discussion led by an expert on a topic of high interest** over the designated time. These sessions are directed at students, but all are welcome to sign up. Approval of Group/Network sponsorship is required from at least one IADR Scientific Group/Network. Focused Learning Session submissions exhibiting a **cross-collaboration** between more than one Scientific Group/Network will be prioritized higher if accepted into the scientific program. IADR encourages not only collaboration within Groups/Networks, but with the greater scientific community.

Satellite Symposium
A **cohesive session organized around a cutting-edge topic that will be scheduled before or after the 2024 IADR/AADOCR/CADR General Session official dates**, March 13-16, 2024.

https://www.iadr.org/2024iags/presentations
Session Proposals

Submission components

Title (up to 10 words)
Description (250 words or less for Symposia; 50 words or less for Focused Learning)
Sponsoring SG/Ns (must select at least one)
Education or Clinician Track
Learning objectives (1-3)
Participants
 Corresponding organizer (point of contact); organizer (participated in the creation of the session)
 Chairperson (session moderator)
 Organizer and chair can be the same person
 Speakers (each speaker is allowed to present at only one symposium and give only one presentation based on an abstract submitted for oral or poster presentation)
Keywords (3-5)
Recorded Components (confirmation of agreement to be recorded)
Miscellanea (any special requests, i.e., scheduling)
Comments (outline individual speaker timings within the symposium; for 3 speakers, it is assumed that each speaker will be provided 25' with 10' for discussion)

https://www.iadr.org/2024iags/presentations
Session Proposals

Submission components

Title (up to 10 words)
Description (250 words or less for Symposia; 50 words or less for Focused Learning)
Sponsoring SG/Ns (must select at least one)
Education or Clinician Track
Learning objectives (1-3)
Participants
Corresponding organizer (point of contact); organizer (participated in the creation of the session)
Chairperson (session moderator)
Speakers (each speaker is allowed to present at only one symposium and give only one presentation)
Keywords (3-5)
Recorded Components (confirmation of agreement to be recorded)
Miscellanea (any special requests, i.e., scheduling)
Comments (outline individual speaker timings within the symposium; for 3 speakers, it is assumed that each speaker will be provided 25' with 10' for discussion)

For detailed information please visit: https://www.iadr.org/2024iags/presentations
Session Proposals

Submission components

Title (up to 10 words)
Description (250 words or less for Symposia; 50 words or less for Focused Learning)
Sponsoring SG/Ns (must select at least one)
Education or Clinician Track
Learning objectives (1-3)
Participants
 Corresponding organizer (point of contact); organizer (participated in the creation of the session)
 Chairperson (session moderator)
 Organizer and chair can be the same person
 Speakers (each speaker is allowed to present at only one symposium and give only one presentation based on an abstract submitted for oral or poster presentation)
Keywords (3-5)
Recorded Components (confirmation of agreement to be recorded)
Miscellaneous (any special requests, i.e., scheduling)
Comments (outline individual speaker timings within the symposium; for 3 speakers, it is assumed that each speaker will be provided 25’ with 10’ for discussion)

Selection criteria

Scientific merit (i.e., proposal organization, topic significance, clarity of objectives, multidisciplinary topic)
Impact of Presenters (i.e., best possible participants for their event, based on scientific relevance and track record)
Diversity and geographic distribution of speakers is expected in every proposal (speakers should reflect the diversity of IADR membership and be inclusive of gender, sexual orientation, ability, race, ethnicity, socioeconomic status or religion)
Demonstrate cross-collaboration with required sponsorship of two or more Scientific Group/Network (SGN)

https://www.iadr.org/2024iags/presentations
Session Proposals

Submission components

Title (up to 10 words)
Description (250 words or less for Symposia; 50 words or less for Focused Learning)
Sponsoring SG/Ns (must select at least one)
Education or Clinician Track
Learning objectives (1-3)
Participants
 Corresponding organizer (point of contact); organizer (participated in the creation of the session)
 Chairperson (session moderator)
 Organizer and chair can be the same person
 Speakers (each speaker is allowed to present at only one symposium and give only one presentation based on an abstract submitted for oral or poster presentation)
Keywords (3-5)
Recorded Components (confirmation of agreement to be recorded)
Miscellanea (any special requests, i.e., scheduling)
Comments (outline individual speaker timings within the symposium; for 3 speakers, it is assumed that each speaker will be provided 25' with 10' for discussion)

Selection criteria

Scientific merit (i.e., best possible participants for their event, based on scientific relevance and track record)
Impact of Presenters (i.e., best possible participants for their event, based on scientific relevance and track record)
Diversity and geographic distribution of speakers is expected in every proposal (speakers should reflect the diversity of IADR membership and be inclusive of gender, sexual orientation, ability, race, ethnicity, socioeconomic status or religion)
Demonstrate cross-collaboration with required sponsorship of two or more Scientific Group/Network (SGN)

Recommend connecting with sponsoring groups’ proposal coordinator and/or group program chair well in advance of posted deadlines to obtain guidance
Session Proposal Submission Closes: September 27, 2023, 11:59 p.m. PT
Abstract Submission Closes: October 17, 2023, 11:59 p.m. PT

2024 IADR/AADO/CR/CADR General Session & Exhibition

MARCH 13-16, 2024 | NEW ORLEANS, LA, USA

102nd General Session & Exhibition of the IADR
53rd Annual Meeting of the AADO/CR
48th Annual Meeting of the CADR

https://www.iadr.org/24IAGSCallforAbstracts
ABSTRACTS

Formatting and adherence to conference guidelines (e.g., ≤300-word abstract, ≤10-word title, required sections: objectives, methods, results, conclusion)

Session Proposal Submission Closes: September 27, 2023, 11:59 p.m. PT

Abstract Submission Closes: October 17, 2023, 11:59 p.m. PT

2024 IADR/AADR/CAORD General Session and Exhibition

MARCH 13-16, 2024 | NEW ORLEANS, LA, USA

102nd General Session & Exhibition of the IADR
53rd Annual Meeting of the AADR
48th Annual Meeting of the CAORD

https://www.iadr.org/24IAGSCallforAbstracts
Session Proposal Submission Closes: September 27, 2023, 11:59 p.m. PT
Abstract Submission Closes: October 17, 2023, 11:59 p.m. PT

ABSTRACTS

Formatting and adherence to conference guidelines (e.g., ≤300-word abstract, ≤10-word title, required sections: objectives, methods, results, conclusion)

Scientific rigor and adherence to reporting guidelines (e.g., report key elements that allow readers to evaluate what was done and what it means, including the why, when, where, how, and so what)

https://www.iadr.org/24IAGSCallforAbstracts
Session Proposal Submission Closes: September 27, 2023, 11:59 p.m. PT
Abstract Submission Closes: October 17, 2023, 11:59 p.m. PT

ABSTRACTS

Formatting and adherence to conference guidelines (e.g., ≤300-word abstract, ≤10-word title, required sections: objectives, methods, results, conclusion)

Scientific rigor and adherence to reporting guidelines (e.g., report key elements that allow readers to evaluate what was done and what it means, including the why, when, where, how, and so what)

Impactful writing and effective communication (e.g., spelling and grammar error checked, short sentences, direct, clear and balanced messaging conveying an interesting story that attracts the interest of potential attendants)

https://www.iadr.org/24IAGSCallforAbstracts
2024 IADR/AADOCR General Session & Exhibition

MARCH 13-16, 2024 | NEW ORLEANS, LA, USA

102nd General Session & Exhibition of the IADR
53rd Annual Meeting of the AADOCR
48th Annual Meeting of the CADR

Session Proposal Submission Closes: September 27, 2023, 11:59 p.m. PT
Abstract Submission Closes: October 17, 2023, 11:59 p.m. PT

https://www.iadr.org/24IAGSCallforAbstracts

ABSTRACTS

- Formatting and adherence to conference guidelines
- Scientific rigor and adherence to reporting guidelines
- Impactful writing and effective communication
Table of Contents:

- **Abstract Rules and Guidelines**
 - Presenter Agreements, IADR Abstract Licensing Policy, IADR Full Disclosure Policy, Presenter Change, Withdrawal of Abstracts
- **Preparing to Submit an Abstract & Instructions**
 - Submission Elements, English Language Assistance Program, Systematic Review Abstracts, Common Mistakes, Group-Author Abstracts, Word Limit Help, Special Requests, Awards and Submission Instructions
- **Criteria for Abstract Acceptance**
- **Submission Categories by Scientific Group/Network**
- **Notification of Acceptance/Non-acceptance**
- **Presenter Pre-registration & Rates**
- **Modes of Presentation**
- **ADA Continuing Education Recognition Program (CERP)**
- **Frequently Asked Questions**

https://www.iadr.org/24IAGSCallforAbstracts
Resources

• Excellent guidance in the IADR Call for Abstracts (https://www.iadr.org/24IAGSCallforAbstracts)

• Peer reviewed-literature (link) and community guidelines (STROBE, CONSORT, STARD)

How to write a good abstract for a scientific paper or conference presentation

Cristinana Andrade
Department of Psychopharmacology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
Address for correspondence: Dr. Cristinana Andrade, Department of Psychopharmacology, National Institute of Mental Health and Neurosciences, Bangalore – 560 025, Karnataka, India. E-mail: andrandc@gmail.com

Copyright © Indian Journal of Psychiatry
This is an open access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Abstracts of scientific papers are sometimes poorly written, often lack important information, and occasionally convey a biased picture. This paper provides detailed suggestions, with examples, for writing the background, methods, results, and conclusions sections of a good abstract. The primary target of this paper is the young researcher; however, authors with all levels of experience may find useful ideas in the paper.

STARD for Abstracts: Essential items for reporting diagnostic accuracy studies in journal or conference abstracts

Jerome F Cohen,
Daniel A Keesey,
Constantine A Galaris,
Paul P Glasziou,
Ludgy Hooff,
David Meher,
Johannes B Hertem,
Inesscia C W de Vrie,
Patrick M Rossouw
For the STARD Group

This is the online version of an article published in August 2017 in The BMJ.

Many abstracts of diagnostic accuracy studies are currently insufficiently informative. We extended the STARD (Standards for Reporting Diagnostic Accuracy) statement by developing a list of essential items that authors should consider when reporting diagnostic accuracy studies in journal or conference abstracts. After a literature review of published guidance for reporting biomedical studies, we identified 39 items potentially relevant to report in an abstract. We then selected essential items through a two-round web conference. In line with previous authors, we found that many of these abstracts were insufficiently informative. Key items, such as eligibility criteria, study setting, participant sampling procedures, and confidence intervals around accuracy estimates were reported in less than half of the abstracts. This makes it difficult for readers to assess the validity and applicability of the study findings. Ideally, studies should be free from deficiencies, and the results of the study should reflect the true accuracy of the test under evaluation. Major sources of bias in diagnostic accuracy studies include methodological flaws in participant recruitment, data collection, and analysis. And
STROBE Checklist

STROBE Statement—Items to be included when reporting observational studies in a conference abstract

<table>
<thead>
<tr>
<th>Item</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Indicate the study’s design with a commonly used term in the title (e.g., cohort, case-control, cross sectional)</td>
</tr>
<tr>
<td>Authors</td>
<td>Contact details for the corresponding author</td>
</tr>
<tr>
<td>Study design</td>
<td>Description of the study design (e.g., cohort, case-control, cross sectional)</td>
</tr>
<tr>
<td>Objective</td>
<td>Specific objectives or hypothesis</td>
</tr>
<tr>
<td>Methods</td>
<td>Description of setting, follow-up dates or dates at which the outcome events occurred or at which the outcomes were present, as well as any points or ranges on other time scales for the outcomes (e.g., prevalence at age 18, 1998-2007).</td>
</tr>
</tbody>
</table>
| **Participants** | **Cohort study**—Give the most important eligibility criteria, and the most important sources and methods of selection of participants. Describe briefly the methods of follow-up.
Case-control study—Give the major eligibility criteria, and the major sources and methods of case ascertainment and control selection
Cross-sectional study—Give the eligibility criteria, and the major sources and methods of selection of participants
Cohort study—For matched studies, give matching and number of exposed and unexposed
Case-control study—For matched studies, give matching criteria and the number of controls per case |
| **Variables** | Clearly define primary outcome for this report |
| **Statistical methods** | Describe statistical methods, including those used to control for confounding. |
| **Results** | Report Number of participants at the beginning and end of the study |
| **Main results** | Report estimates of associations. If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period
Report appropriate measures of variability and uncertainty (e.g., odds ratios with confidence intervals |
| **Conclusions** | General interpretation of study results |

CONSORT Checklist

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Identification of the study as randomised</td>
</tr>
<tr>
<td>Authors</td>
<td>Contact details for the corresponding author</td>
</tr>
<tr>
<td>Trial design</td>
<td>Description of the trial design (e.g., parallel, cluster, non-inferiority)</td>
</tr>
<tr>
<td>Methods</td>
<td>Eligibility criteria for participants and the settings where the data were collected</td>
</tr>
<tr>
<td>Interventions</td>
<td>Interventions intended for each group</td>
</tr>
<tr>
<td>Objective</td>
<td>Specific objective or hypothesis</td>
</tr>
<tr>
<td>Outcome</td>
<td>Clearly defined primary outcome for this report</td>
</tr>
<tr>
<td>Randomisation</td>
<td>How participants were allocated to interventions</td>
</tr>
<tr>
<td>Blinding (masking)</td>
<td>Whether or not participants, care givers, and those assessing the outcomes were blinded to group assignment</td>
</tr>
<tr>
<td>Results</td>
<td>Number of participants randomised to each group</td>
</tr>
<tr>
<td>Recruitment</td>
<td>Trial status</td>
</tr>
<tr>
<td>Numbers analysed</td>
<td>Number of participants analysed in each group</td>
</tr>
<tr>
<td>Outcome</td>
<td>For the primary outcome, a result for each group and the estimated effect size and its precision</td>
</tr>
<tr>
<td>Harms</td>
<td>Important adverse events or side-effects</td>
</tr>
<tr>
<td>Conclusions</td>
<td>General interpretation of the results</td>
</tr>
<tr>
<td>Trial registration</td>
<td>Registration number and name of trial register</td>
</tr>
<tr>
<td>Funding</td>
<td>Source of funding</td>
</tr>
</tbody>
</table>
English Language Assistance Program (ELAP)

IADR is pleased to offer an English Language Assistance Program (ELAP) to assist our abstracts submitters with English Language, through the generous support of our IADR colleagues who have agreed to volunteer. This program is designed to assist non-native English-speaking abstract submitters during the abstract submission process.

Individuals who are interested in applying for the IADR ELAP and intend to submit an abstract for the 2024 IADR/AADOCR/CADR General Session, needs to complete the online form by September 19, 2023. Individuals will be matched with our volunteers based on their expertise, geographic location, and availability.
English Language Assistance Program (ELAP)

IADR is pleased to offer an English Language Assistance Program (ELAP) to assist our abstracts submitters with English Language, through the generous support of our IADR colleagues who have agreed to volunteer. This program is designed to assist non-native English-speaking abstract submitters during the abstract submission process.

Individuals who are interested in applying for the IADR ELAP and intend to submit an abstract for the 2024 IADR/AADOCR/CADR General Session, needs to complete the online form by September 19, 2023. Individuals will be matched with our volunteers based on their expertise, geographic location, and availability.

Please note that **individuals in the IADR ELAP are required to submit their abstracts twice** — once to the program for editing and matching with a volunteer, and again to the IADR/AADOCR/CADR General Session abstract submission site after English language editing has been completed.

To ensure that the submitter and volunteer communicate in a timely manner, IADR will follow up with both individuals. Any problems with a volunteer match can be communicated to IADR at **ELAP@iadr.org**.

We hope that this program will encourage individuals to submit abstracts for IADR meetings by facilitating the improvement of English language skills within the research community.

Please contact IADR at **ELAP@iadr.org** if you have any further questions about this program.
Key elements

- **Well-written** (i.e., no typos, grammar/syntax errors, understandable) [*have others proof-read it*]
 - *Direct* language is preferred: short sentences

- Provide a logically progressing story [intro, methods, results, conclusions]

- Present enough information [methods] so that others understand what you did, without too much information

- Present the main or key findings in the results [results]

- Avoid over-reliance on p-values and strive for quantitative measures (e.g., 40% increase; 'most' participants, etc.)

- Be interesting and exciting but at the same time objective and balanced

- Emphasize novel findings

- Don’t over-reach (i.e., typically more research is needed to validate or replicate results, etc.)
Key elements

• Well-written (i.e., no typos, grammar/syntax errors, understandable) [have others proof-read it]
 • *Direct* language is preferred: short sentences

• Present a **logically progressing story** [intro, methods, results, conclusions]
 • Present enough information [methods] so that others understand what you did
 • *Not* too much information
 • Present the main or key findings in the results [results]
 • Emphasize novel findings
 • Avoid over-reliance on p-values and strive for quantitative measures (e.g., 40% increase; *most* participants, etc.)

• Be interesting and exciting but at the same time objective and balanced

• Don’t over-reach (i.e., typically more research is needed to validate or replicate results, etc.)
Well-written (i.e., no typos, grammar/syntax errors, understandable) [have others proof-read it]
• Direct language is preferred: short sentences
• Present a logically progressing story [intro, methods, results, conclusions]
• Present enough information [methods] so that others understand what you did
 • but not too much information

• Present key findings in the results [results]
• Avoid over-reliance on p-values and strive for quantitative measures (e.g., 40% increase)
• Be interesting and exciting but at the same time objective and balanced
• Emphasize novel findings
• Don’t over-reach (i.e., typically more research is needed to validate or replicate results, etc.)
• Well-written (i.e., no typos, grammar/syntax errors, understandable) [have others proof-read it]
 • *Direct* language is preferred: short sentences

• Present a *logically progressing story* [intro, methods, results, conclusions]

• Present *enough information* [methods] so that others understand what you did
 • but not *too much* information

• Present the main or *key findings* in the results [results]
 • Avoid over-reliance on p-values and strive for *quantitative measures* (e.g., 40% increase; ‘most’ participants, etc.)
Key elements

• Well-written (i.e., no typos, grammar/syntax errors, understandable) [have others proof-read it]
 • Direct language is preferred: short sentences

• Present a logically progressing story [intro, methods, results, conclusions]

• Present enough information [methods] so that others understand what you did
 • but not too much information

• Present the main or key findings in the results [results]
 • Avoid over-reliance on p-values and strive for quantitative measures (e.g., 40% increase; ‘most’ participants, etc.)

• Be interesting and exciting but at the same time objective and balanced
Key elements

• Well-written (i.e., no typos, grammar/syntax errors, understandable) [have others proof-read it]
 • Direct language is preferred: short sentences

• Present a logically progressing story [intro, methods, results, conclusions]

• Present enough information [methods] so that others understand what you did
 • but not too much information

• Present the main or key findings in the results [results]
 • Avoid over-reliance on p-values and strive for quantitative measures (e.g., 40% increase; ‘most’ participants, etc.)

• Be interesting and exciting but at the same time objective and balanced
 • Emphasize novel findings or what is the incremental addition to the knowledge base
Key elements

• Well-written (i.e., no typos, grammar/syntax errors, understandable) [have others proof-read it]
 • Direct language is preferred: short sentences

• Present a logically progressing story [intro, methods, results, conclusions]

• Present enough information [methods] so that others understand what you did
 • but not too much information

• Present the main or key findings in the results [results]
 • Avoid over-reliance on p-values and strive for quantitative measures (e.g., 40% increase; ‘most’ participants, etc.)

• Be interesting and exciting but at the same time objective and balanced
 • Emphasize novel findings or what is the incremental addition to the knowledge base
 • Don’t over-reach (i.e., typically more research is needed to validate or replicate results, etc.)
Key elements

- Well-written (i.e., no typos, grammar/syntax errors, understandable) [have others proof-read it]
 - *Direct* language is preferred: short sentences

- Present a logically progressing story [intro, methods, results, conclusions]

- Present enough information [methods] so that others understand what you did
 - but not *too much* information

- Present the main or key findings in the results [results]
 - Avoid over-reliance on p-values and strive for quantitative measures (e.g., 40% increase; ‘most’ participants, etc.)

- Be interesting and exciting but at the same time objective and balanced
 - Emphasize *novel* findings or what is the *incremental addition* to the knowledge base
 - Don’t over-reach (i.e., typically more research is needed to validate or replicate results, etc.)

Questions?
Questions that you (typically) want to answer

1. What is the problem

[1] This is where you establish the significance of the topic

Frequently mentions of the prevalence of a condition, the societal (or individual) impacts, biology, human health or quality of life, etc.

In some ways, the ‘problem’ (e.g., dental caries, periodontal disease, craniofacial conditions, oral cancer) could be an opportunity – thus approach it positively
How to build your story

Questions that you (typically) want to answer

1. What is the problem
2. What do we know about it

[2]
A balanced overview of the evidence, literature. Succinct.

This should provide the basis of what you want to build upon

Not exhaustive, but as well-informed and up-to-date as possible
How to build your story

Questions that you (typically) want to answer

1. What is the problem
2. What do we know about it
3. What do we not know about

[3] Strategically identify the knowledge gaps that you specifically set out to address.

These could be multiple, but you may ultimately want and can address one or two of these gaps in a presentation and corresponding abstract.
How to build your story

Questions that you (typically) want to answer

1. What is the problem
2. What do we know about it
3. What do we not know about
4. Thus, what is the knowledge gap

[4]
There is lack of or insufficient data or low-quality evidence; or the data are conflicting; it is unclear whether some sub-groups are or ‘behave’ differently than others.

In some cases, you may just want to “add to the knowledge or evidence base”
How to build your story

Questions that you (typically) want to answer

1. What is the problem
2. What do we know about it
3. What do we not know about
4. Thus, what is the knowledge gap
5. Consequently, what did you set out to study?

[5]
Your main research question or study objective;
or, your specific aims or hypotheses
Questions that you (typically) want to answer

1. What is the problem
2. What do we know about it
3. What do we not know about
4. Thus, what is the knowledge gap
5. Consequently, what did you set out to study?
6. How did you seek to research this question?

[6]
Descriptions of population, sample (including size), experimental model, secondary data, timeframe, any specialized methods.

Research strategy including data analysis including descriptive, bivariate and multivariable methods/modeling.

Inference based on statistical testing or effect estimation, etc.
How to build your story

Questions that you (typically) want to answer

1. What is the problem
2. What do we know about it
3. What do we not know about
4. Thus, what is the knowledge gap
5. Consequently, what did you set out to study?
6. How did you seek to research this question?
7. What did you find?

[7] Key features of the results; frequently (but not necessarily) beginning with a main, descriptive statement.

Then the main outcome.

Then any additional, secondary, supplemental, stratified, or confirmatory analyses.

Typically, all information in this section is backed up (your) data
How to build your story

Questions that you (typically) want to answer

1. What is the problem
2. What do we know about it
3. What do we not know about
4. Thus, what is the knowledge gap
5. Consequently, what did you set out to study?
6. How did you seek to research this question?
7. What did you find?
8. What does this mean?

[8]
High level interpretation of the results, the “so what”. Not-restating of numbers or metrics, typically a qualitative appreciation of the entire study findings. Offer some ideas about why the results are what they are. Comment on **novelty** and **significance**
Questions that you (typically) want to answer

1. What is the problem
2. What do we know about it
3. What do we not know about
4. Thus, what is the knowledge gap
5. Consequently, what did you set out to study?
6. How did you seek to research this question?
7. What did you find?
8. What does this mean?
9. What are the potential implications?

Comment on the importance (in the field or in the real-world) of the findings.
Are they surprising, changing paradigm, highlighting a new mechanism, illustrate a problem.
How to build your story

Questions that you (typically) want to answer

1. What is the problem
2. What do we know about it
3. What do we not know about
4. Thus, what is the knowledge gap
5. Consequently, what did you set out to study?
6. How did you seek to research this question?
7. What did you find?
8. What does this mean?
9. What are the potential implications?
10. What is next?

[10] Is there further research, to validate or replicate these results, or examine something further, needed? If so, what that may be?
Perhaps the next step is policy action/change, public awareness, change in practice, etc.?
How to build your story

Questions that you (typically) want to answer

1. What is the problem
2. What do we know about it
3. What do we not know about
4. Thus, what is the knowledge gap
5. Consequently, what did you set out to study?
6. How did you seek to research this question?
7. What did you find?
8. What does this mean?
9. What are the potential implications?
10. What is next?

Corresponding abstract sections

Objectives

Methods

Results

Conclusion

Questions?
Objectives: Early childhood caries (ECC) is known to be influenced by numerous multi-level factors including social determinants, oral health-related behaviors and practices, and individual susceptibility. Disentangling these frequently intersecting influences and identifying key drivers of health remains challenging in dental public health and clinical practice. To add to the knowledge base of ECC determinants, we sought to identify and describe characteristics of positive ECC spatial outliers among a large, community-based sample of preschool-age children in North Carolina (NC).

Methods: We used tooth surface-level clinical data of caries experience (i.e., dmfs index, defined at the ICDA≥1 threshold) from 6,310 preschool-age children (mean age=52 months; range=36-71 months) who were participants of the ZOE 2.0 study in NC, United States and were successfully geocoded via a geographic information systems (GIS) application (ArcGIS Pro). We identified positive outliers (participants with low ECC experience in a high ECC experience area, LH) and their corresponding clusters of neighboring participants with high ECC experience (i.e., a “hotspot” or high ECC experience area, HH) using a Local Moran’s I p<10^-3 criterion. We used bivariate methods to compare demographic characteristics, oral health behaviors, and practices between LH and HH participants using a p<0.05 statistical significance criterion.

Results: There were 153 LH participants (dmfs median=7; range=0-14) and 161 HH (dmfs median=34; range=15-84) participants. More parent/guardian respondents were Spanish speakers among the HH versus the LH group (27% versus 18%, p=0.04) and had less than high school education (36% versus 20%, p=0.01). We found no important differences in common oral health behaviors (e.g., tooth brushing frequency) or report of a dental home.

Conclusions: Family demographics differed between ECC positive outliers and their high-ECC experience neighbors, within a community-based sample of children in high disease prevalence areas of NC. Future studies can further elucidate underlying mechanisms at-play using qualitative methods and biological data.

Meeting: 2022 AADOCR/CADR Annual Meeting
Location: Hybrid, Atlanta, Georgia
Year: 2022
Final Presentation ID: 0931
Examples

1. What is the **problem**
2. What do **we** know about it
3. What do **we** not know about it
4. Thus, what is the **knowledge gap**
5. **What did we set out to study?**
6. *How did we seek to study it?*
7. What did we **find**?
8. What does this **mean**?
9. What are **potential implications**?
10. What is next?

the how includes: population or sample characteristics, context/location, outcome measures and covariates, analytical approach and criteria, etc.
Objectives: Early childhood caries (ECC) is known to be influenced by numerous multi-level factors including social determinants, oral health-related behaviors and practices, and individual susceptibility. Disentangling these frequently intersecting influences and identifying key drivers of health remains challenging in dental public health and clinical practice. To add to the knowledge base of ECC determinants, we sought to identify and describe characteristics of positive ECC spatial outliers among a large, community-based sample of preschool-age children in North Carolina (NC).

Methods: We used tooth surface-level clinical data of caries experience (i.e., dmfs index, defined at the ICDAS≥1 threshold) from 6,310 preschool-age children (mean age=52 months; range=36-71 months) who were participants of the ZOE 2.0 study in NC, United States and were successfully geocoded via a geographic information systems (GIS) application (ArcGIS Pro). We identified positive outliers (participants with low ECC experience in a high ECC experience area, LH) and their corresponding clusters of neighboring participants with high ECC experience (i.e., a “hotspot” or high ECC experience area, HH) using a Local Moran’s I p<10⁻³ criterion. We used bivariate methods to compare demographic characteristics, oral health behaviors, and practices between LH and HH participants using a p<0.05 statistical significance criterion.

Results: There were 153 LH participants (dmfs median=7; range=0-14) and 161 HH (dmfs median=34; range=15-84) participants. More parent/guardian respondents were Spanish speakers among the HH versus the LH group (27% versus 18%, p=0.04) and had less than high school education (36% versus 20%, p=0.01). We found no important differences in common oral health behaviors (e.g., tooth brushing frequency) or report of a dental home.

Conclusions: Family demographics differed between ECC positive outliers and their high-ECC experience neighbors, within a community-based sample of children in high disease prevalence areas of NC. Future studies can further elucidate underlying mechanisms at-play using qualitative methods and biological data.

Meeting: 2022 AADOCR/CADR Annual Meeting

Location: Hybrid, Atlanta, Georgia

Year: 2022

Final Presentation ID: 0931
EXAMPLES

1. What is the **problem**
2. What do **we** know about it
3. What do **we not** know about
4. Thus, what is the **knowledge gap**
5. **What did we set out to study?**
6. **How did we seek to study it?**
7. **What did we find?**
8. **What does this mean?**
9. **What are potential implications?**
10. **What is next?**

Objectives: Early childhood caries (ECC) is known to be influenced by numerous multi-level factors including social determinants, oral health-related behaviors and practices, and individual susceptibility. Disentangling these frequently intersecting influences and identifying key drivers of health remains challenging in dental public health and clinical practice. To add to the knowledge base of ECC determinants, we sought to identify and describe characteristics of positive ECC spatial outliers among a large, community-based sample of preschool-age children in North Carolina (NC).

Methods: We used tooth surface-level clinical data of caries experience (i.e., dmfs index, defined at the ICDA≥1 threshold) from 6,310 preschool-age children (mean age=52 months; range=36-71 months) who were participants of the ZOE 2.0 study in NC, United States and were successfully geocoded via a geographic information systems (GIS) application (ArcGIS Pro). We identified positive outliers (participants with low ECC experience in a high ECC experience area, LH) and their corresponding clusters of neighboring participants with high ECC experience (i.e., a “hotspot” or high ECC experience area, HH) using a Local Moran’s I < 10^-3 criterion. We used bivariate methods to compare demographic characteristics, oral health behaviors, and practices between LH and HH participants using a p<0.05 statistical significance criterion.

Results: There were 153 LH participants (dmfs median=7; range=0-14) and 161 HH (dmfs median=34; range=15-84) participants. More parent/guardian respondents were Spanish speakers among the HH versus the LH group (27% versus 18%, p=0.04) and had less than high school education (36% versus 20%, p=0.01). We found no important differences in common oral health behaviors (e.g., tooth brushing frequency) or report of a dental home.

Conclusions: Family demographics differed between ECC positive outliers and their high-ECC experience neighbors, within a community-based sample of children in high disease prevalence areas of NC. Future studies can further elucidate underlying mechanisms at-play using qualitative methods and biological data.

Division:
Meeting: 2022 AADOCR/CADR Annual Meeting
Location: Hybrid, Atlanta, Georgia
Year: 2022
Final Presentation ID: 0931
EXAMPLES

1. What is the problem
2. What do we know about it
3. What do we not know about it
4. Thus, what is the knowledge gap
5. What did we set out to study?
6. How did we seek to study it?
7. What did we find?
8. What does this mean?
9. What are potential implications?
10. What is next?

Objectives: Developmental defects of the enamel (DDE) are a heterogeneous group of clinically manifest disturbances of amelogenesis that remain understudied, especially in the primary dentition. In this study, we sought to identify genetic loci associated with diffuse opacities, a relatively common DDE type, in a community-based study of preschool-age children.

Methods: We used tooth-level DDE data for diffuse opacities, collected in a genetic epidemiologic study of early childhood oral health in North Carolina. Genotyping was done using the Infinium Global Diversity Array and subsequent imputation to ~340 million markers was based on the TOPMed panel. We used Genome-wide Complex Trait Analysis package to calculate heritability estimates. A genome-wide association study of diffuse opacities was then carried out among 6,057 children ages 3-5 years. Normalized residuals from zero-inflated negative binomial regression of diffuse opacities on age, sex, and self-reported race/ethnicity were carried forward to genetic linear regression models accounting for genetic ancestry (8 principal components). Single markers (SNPs) with p<5x10^-8 were considered genome-wide significant and all loci with p<10^-6 were prioritized for annotation using Functional Mapping and Annotation of genetic associations (PUMA).

Results: The heritability of diffuse opacities was estimated to be 16% (p=7.4x10^-8). Two loci demonstrated genome-wide significant evidence of association on chromosomes 7 and 1. Variation in rs77669438 (p=9.1x10^-11; minor allele (A) frequency=1.2%) located nearby the non-DNA coding gene Y RNA showed the strongest evidence of association. Another intergenic region on chromosome 1 (rs11440629, p=2.0x10^-8) showed genome-wide significant evidence of association and is in linkage disequilibrium with two functional variants: rs566606 (CADD score=21.4) and rs608266 (Regulome DB score=2b).

Conclusions: The study’s findings highlight two novel loci with potential role in enamel formation in the primary dentition. These genes and variants need to be mechanistically investigated and validated to advance our understanding of susceptibility and mechanisms underlying dental developmental defects.
Developmental Defects of the Enamel GWAS in the Primary Dentition

Objectives: Developmental defects of the enamel (DDE) are a heterogeneous group of clinically manifest disturbances of amelogenesis that remain understudied, especially in the primary dentition. In this study, we sought to identify genetic loci associated with diffuse opacities, a relatively common DDE type, in a community-based study of preschool-age children.

Methods: We used tooth-level DDE data for diffuse opacities, collected in a genetic epidemiologic study of early childhood oral health in North Carolina. Genotyping was done using the Infinium Global Diversity Array and subsequent imputation to ~340 million markers was based on the TOPMed panel. We used Genome-wide Complex Trait Analysis package to calculate heritability estimates. A genome-wide association study of diffuse opacities was then carried out among 6,057 children ages 3-5 years. Normalized residuals from zero-inflated negative binomial regression of diffuse opacities on age, sex, and self-reported race/ethnicity were carried forward to genetic linear regression models accounting for genetic ancestry (8 principal components). Single markers (SNPs) with $p<5\times10^{-8}$ were considered genome-wide significant and all loci with $p<10^{-6}$ were prioritized for annotation using Functional Mapping and Annotation of genetic associations (FUMA).

Results: The heritability of diffuse opacities was estimated to be 16% ($p=7.4\times10^{-10}$). Two loci demonstrated genome-wide significant evidence of association on chromosomes 7 and 1. Variation in rs7769348 ($p=9.1\times10^{-11}$; minor allele (A) frequency=1.2%) located nearby the non-DNA coding gene Y RNA showed the strongest evidence of association. Another intergenic region on chromosome 1 (rs11440629, $p=2.0\times10^{-9}$) showed genome-wide significant evidence of association and is in linkage disequilibrium with two functional variants: rs566606 (CADD score=21.4) and rs608266 (Regulome DB score=2b).

Conclusions: The study's findings highlight two novel loci with potential role in enamel formation in the primary dentition. These genes and variants need to be mechanistically investigated and validated to advance our understanding of susceptibility and mechanisms underlying dental developmental defects.

Meeting: 2023 AADOCR/CADR Annual Meeting (Portland, Oregon)
Location: Portland, Oregon
Year: 2023
Final Presentation ID: 0955
Developmental Defects of the Enamel GWAS in the Primary Dentition

Objectives: Developmental defects of the enamel (DDE) are a heterogeneous group of clinically manifest disturbances of amelogenesis that remain understudied, especially in the primary dentition. In this study, we sought to identify genetic loci associated with diffuse opacities, a relatively common DDE type, in a community-based study of preschool-age children.

Methods: We used tooth-level DDE data for diffuse opacities, collected in a genetic epidemiologic study of early childhood oral health in North Carolina. Genotyping was done using the Infinium Global Diversity Array and subsequent imputation to ~340 million markers was based on the TOPMed panel. We used Genome-wide Complex Trait Analysis package to calculate heritability estimates. A genome-wide association study of diffuse opacities was then carried out among 6,057 children ages 3-5 years. Normalized residuals from zero-inflated negative binomial regression of diffuse opacities on age, sex, and self-reported race/ethnicity were carried forward to genetic linear regression models accounting for genetic ancestry (8 principal components). Single markers (SNPs) with \(p < 5 \times 10^{-8} \) were considered genome-wide significant and all loci with \(p < 10^{-6} \) were prioritized for annotation using Functional Mapping and Annotation of genetic associations (FUMA).

Results: The heritability of diffuse opacities was estimated to be 16% (\(p = 7.4 \times 10^{-10} \)). Two loci demonstrated genome-wide significant evidence of association on chromosomes 7 and 1. Variation in rs77696348 (\(p = 9.1 \times 10^{-11} \); minor allele (A) frequency=1.2%) located nearby the non-DNA coding gene Y RNA showed the strongest evidence of association. Another intergenic region on chromosome 1 (rs11440629, \(p = 2.0 \times 10^{-9} \)) showed genome-wide significant evidence of association and is in linkage disequilibrium with two functional variants: rs566606 (CADD score=21.4) and rs608266 (Regulome DB score=2b).

Conclusions: The study's findings highlight two novel loci with potential role in enamel formation in the primary dentition. These genes and variants need to be mechanically investigated and validated to advance our understanding of susceptibility and mechanisms underlying dental developmental defects.

Meeting: 2023 AADOCR/CADR Annual Meeting (Portland, Oregon)
Location: Portland, Oregon
Year: 2023
Final Presentation ID: 0955
Developmental Defects of the Enamel GWAS in the Primary Dentition

Objectives: Developmental defects of the enamel (DDE) are a heterogeneous group of clinically manifest disturbances of amelogenesis that remain understudied, especially in the primary dentition. In this study, we sought to identify genetic loci associated with diffuse opacities, a relatively common DDE type, in a community-based study of preschool-age children.

Methods: We used tooth-level DDE data for diffuse opacities, collected in a genetic epidemiologic study of early childhood oral health in North Carolina. Genotyping was done using the Infinium Global Diversity Array and subsequent imputation to ~340 million markers was based on the TOPMed panel. We used Genome-wide Complex Trait Analysis package to calculate heritability estimates. A genome-wide association study of diffuse opacities was then carried out among 6,057 children ages 3-5 years. Normalized residuals from zero-inflated negative binomial regression of diffuse opacities on age, sex, and self-reported race/ethnicity were carried forward to genetic linear regression models accounting for genetic ancestry (8 principal components). Single markers (SNPs) with $p<5\times10^{-8}$ were considered genome-wide significant and all loci with $p<10^{-6}$ were prioritized for annotation using Functional Mapping and Annotation of genetic associations (FUMA).

Results: The heritability of diffuse opacities was estimated to be 16% ($p=7.4\times10^{-10}$). Two loci demonstrated genome-wide significant evidence of association on chromosomes 7 and 1. Variation in rs77669438 ($p=9.1\times10^{-11}$; minor allele (A) frequency=1.2%) located nearby the non-DNA coding gene Y RNA showed the strongest evidence of association. Another intergenic region on chromosome 1 (rs11440629, $p=2.0\times10^{-9}$) showed genome-wide significant evidence of association and is in linkage disequilibrium with two functional variants: rs566606 (CADD score=21.4) and rs608266 (Regulome DB score=2b).

Conclusions: The study’s findings highlight two novel loci with potential role in enamel formation in the primary dentition. These genes and variants need to be mechanistically investigated and validated to advance our understanding of susceptibility and mechanisms underlying dental developmental defects.

Meeting: 2023 AADOCR/CADR Annual Meeting (Portland, Oregon)
Location: Portland, Oregon
Year: 2023
Final Presentation ID: 0955
Questions?

Contacts:
Kimon_Divaris@unc.edu
noha.gomaa@schulich.uwo.ca
simancasp@icloud.com
roger.keller@ufrgs.br